Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants.

نویسنده

  • Jeremy Gunawardena
چکیده

Multisite protein phosphorylation and dephosphorylation are key cellular regulatory mechanisms but their system properties have been difficult to study in vivo and in vitro. Here we show by mathematical analysis that steady-state invariants enable the mechanism of the kinase or the phosphatase to be determined from steady-state measurements. Invariants exist when both enzymes act distributively (i.e., nonprocessively), making at most one modification in each molecular encounter. For instance, in the sequential case, in any experiment involving the same ingredients, the quantity [S(i-1)][S(i+1)]/[S(i)](2) always has the same value, where [S(i)] denotes the steady-state concentration of the i-th phospho-form. For a two-site substrate, if either enzyme exhibits processivity, so that more than one modification can be made in each molecular encounter, the degree of processivity can be estimated from changes in this invariant. We discuss the experimental and theoretical challenges in extending these results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term dynamics of multisite phosphorylation

Multisite phosphorylation cycles are ubiquitous in cell regulation systems and are studied at multiple levels of complexity, from molecules to organisms, with the ultimate goal of establishing predictive understanding of the effects of genetic and pharmacological perturbations of protein phosphorylation in vivo. Achieving this goal is essentially impossible without mathematical models, which pr...

متن کامل

The geometry of multisite phosphorylation.

Reversible protein phosphorylation on multiple sites is a key regulatory mechanism in most cellular processes. We consider here a kinase-phosphatase-substrate system with two sites, under mass-action kinetics, with no restrictions on the order of phosphorylation or dephosphorylation. We show that the concentrations of the four phosphoforms at steady state satisfy an algebraic formula-an invaria...

متن کامل

On the number of steady states in a multiple futile cycle.

The multisite phosphorylation-dephosphorylation cycle is a motif repeatedly used in cell signaling. This motif itself can generate a variety of dynamic behaviors like bistability and ultrasensitivity without direct positive feedbacks. In this paper, we study the number of positive steady states of a general multisite phosphorylation-dephosphorylation cycle, and how the number of positive steady...

متن کامل

Compact Modeling of Allosteric Multisite Proteins: Application to a Cell Size Checkpoint

We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an allosteric protein by its individua...

متن کامل

Longest Path in Networks of Queues in the Steady-State

Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 93 11  شماره 

صفحات  -

تاریخ انتشار 2007